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SOLUTION OF HYPERBOLIC HEAT- AND MASS-TRANSFER EQUATIONS
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A method is presented for the solution of heat- and mass-transfer equa-
tions (1)-(2) for generalized conditions of the second kind. The solu-
tions are compared with the earlier derived analogous solutions, with-
out consideration of the Fourier relaxation criterion,

Reference [1] presents new phenomenological heat-
and mass-transfer equations of the parabolic-hyper-
bolictype in which the finite rate of moisture propagation
in capillary-porous bodies is taken into consideration:

O o1 k029 (1)
d Fo dFo

9%0 I a0
™ 3Fo* ' dFo

Fo

=Luy*0 —LuPny?7, (2)

where Fopy, = afym /R? is the relaxation mass-transfer
Fourier criterion; Ty, is the relaxation time; v =
= 8%/0X? +(m — 1)/X (8/8X) (0 = X = 1) is the Laplace
operator. The values of m for classical bodies are
presented in the table.

Let us solve system (1)—(2) for generalized bound-
ary conditions of the second kind {2]:

-«%@+Kiq(Fo)~(1_g) LuKoKi, (Fo) =0, (3)
38(1, Fo) _  aT(L Fo) o0 . _
X t Pn X + Kiy, (Fo) =0, (4)
OT(0, Fo) _ - 960, Fo) _ )
X ' X

and initial conditions
T(X, 0) =To(X);, (X, 0) =0,(X);

90 (X, 0) _

X).
3Fo 8,(X) (6)

Applying the final integral transformation [2, 3] to
(1) and (2) with the kernel k(£,X) (table), and then the
integral Laplace transform over the variable Fo [2,
4,5], we find

T, = % 8,470, , (7)

=1

2
0, = }‘ 8 AT D, (8)

=i

where

811 = Fo,, p* +p + Lupz; 8, =—peKo (9)
8o = LuPnpl; 8y =p+p; (10)

A = 81,65 — 840801 = Fo,, (0 —p) p—pa) (p —p,). (11)

The roots py (i = 1, 2, 3) are found from the equation

p* 4 (wa -+ Form) p* + (1 4 Lu + ¢ Ko Pn Lu) x

~1 2

X Foym pa p 4 LuFon, ps = 0. (12)

From the Kardano formula

77 3 3
with aby = —v/3;

@ == pg + For = —(py -+ pa -+ pu)s (13)

B = (1 4+ Lu+eKoPnLu)Fo,, pi=

= P12 + PiPs + PoPy (1%)

v=Lu Fo,, p,: =: — PiPaPs- (15)

The validity of Egs. (13)—(15) follows from the the-
ory of polynomials [6]. The convergence of series (21)
and (22) presented below imposes the condition that
all the roots p; be negative. In particular, this follows
from (13)—(15), since &, B, and v are quantities that
are always positive. The roots p;, are calculated
from the above-cited formulas, but into these we must
successively substitute the values of uy, ug, ..., Hpyn =
=1,2,..., ).

I the discriminant D = u®/4 +v®/27 < 0, all roots
are real and different; if D = 0, then p; and p; = p; are
real numbers; if D >0, p; is a real root and p, and p;
are conjugate complex roots.

The reconversion for the variable X isaccomplished
with the formula [2—4]

¢ (X, Fo) =mie(0, Fo)l,+

+2 Eklwn)k-(um [ (1,0 FOl,,

n=1

(16)

where the values of m, kj(#y), and k{u,X) for classical
bodies are given in the table.
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To find [¢(0, Fo)]y, i.e., Ty(0, Fo) and ®(0, Fo),
it must be assumed in Eq. (12) that Hp =0, so that we
have

p* + p*Form =0, (a7

whence p; = "Fox—';n and the double root p; = p; = 0.
Using the formula

[¢ (0, Fo)l, = lim i’i‘-'i)—) exppFo +

p-Form 1

+”l*°[ IEPP O%(P)
®(p) _ MA&L}
+exppFo 2 (p) exppFo [ (p)1* ’ (18)

where

Py = Fo,m p% s == Fo,p (p 4 Form).

Since ¢(p) = éljdrj(l,j =1,2), as follows from (9)—
(10),

By P ™

e P

lim 8, ®;=0,while lim ¢'(p)=lim &;®;.
1} By, P=0 Q

After calculation and transformation we have the final
solution for D < 0 and py = ps = p3 < 0:

3

2
2 me, (19)
=t ‘i= :

8(X, Fo) = 22 23(132]:1 (20)

j=1 “I=1

T (X, Fo) =

where
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=1
i
= vmme"'“ {To(X) +eKo8,(X)1dX +
0
) 3

+2 }] 2 B a7 £ (1) £ (11 X) €XP (P, FO) X

n=1 =l

1
x 5 [Ty (X) + & Ko 8y (X)1 & (s, X) dX +
0
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Fo
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0

o 3

+2 E 2 Suin B’ £ (o) K (i X)X

n=l =

Fo
><5 ¥, (Fo*) exp [p,, (Fo—Fo*)} dFo*; (21)
o

= V,9; | FO,,, exp(— Fo/Fo,,) m YX'"—‘G1 (X)dX +

L)
Fo
+ mj ¥, (Fo*) exp [— (Fo — Fo*)/Fo,,,) d Fo*| +
0

i
o+ Ve {m § X7~ [Fo,, 8y (X) +
)

Fo
+8,(X)1dX +m S v, (Fo*)dFo‘} +
1]

o™ 3
+2 E 2 821 A (11 X) X

n=l {=]

1

x{€XD (piy FO) £ (1n) | 1Fo, €4 (X) +

0

+(Fom Pist 1) 8o (X)) B (1, X) dX +

Fo
+ ke (un)j ¥, (Fo*) exp1p;, (Fo —Fo*)ld FO*} '
0

k(o X) = XmLk(p, X); (22)

Vig1 = eKo, vapy = ~1, vz =1, vo2 = 0, vz = — €Ko,
vegy = 1, 61jin(l,j =1, 2;i=1, 2, 3) are Egs. (9)—
(10) into which instead of p we have, respectively, sub-
stituted the roots pjn; Aj, are derived from (11) by re-

placing p by pj, and by eliminating the i~th cofactor,

which is equal to zero: Ajp = Form(Pm ~ Pm) (Pm —
= pm)s A = ~Fopm(Pm - Pan) (P2n — Pan)s Asp =

Kernels of integral transformations and characteristic equations

Kernel of
m | x integral | ) | Fa Gt Characteristic equation L™
transfor-
mations
Plate 1 || cospn X 1 (—nHt sinpn =0 173
R wp=aw(n=1, 2,..)
Cylinder 2 |- BaX) |1 ! Iy (pa) =0 1/2
R Jo(en) | Jo(pn)
. 2
Sphere PR LA il X - Fa En te e = pp 3/5
R un X sin? pp sin Py

Note: R is half the thickness of the plate, and the external radii of the cylinder

and the sphere are 0 =x <R, 0 =sr =sR.
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= Fopm(Pm ~ psm) (Pen = Pm)s ¥y = Kig(Fo) — (1 ~
— &)LuKoKip,(Fo) and ¥; = LuKiy(Fo).

When D = 0 we have p; = 2a; — @/3 < 0 and the
double root py = py =p3 = —(a; + @/3) < 0.

To find the original from the mapping of (7) and (8)
we must use formula (18): here it is necessary to find
the limits of the denominators ¥(p) = Foprm(p = po)2
and ¥y(p) = Fopm(p = p1), for the numerator ¢(p) and its
derivative, respectively, as p—p; and p — py.

If we take into consideration that ¥y(p} = Fopm,
while ¢'(p) = é'lj‘ﬁjL +6qu’jL’ after appropriate calcu-
lations and transformations we have a common nota-
tion for the solution in the form of (19) and (20), but
here the value of ‘5ljin in formulas (21) and (22) are
equal to

811in = FOpp Pin + P + LU, 8101 = — prpe Ko,
Bp1n = LUPN UL, 8oy, = P + 1o
(=13 piy =P O Py,
8112 = [FO (Poy — P1a) — 11 (FOpm, s + Pon + Lt pr)+
+ (2F0,, Por + 1) (Pon — P1a)s

812en = —— e Ko {Fo{po, — P1,) Por. — Paal,
6‘.’.12n = [FO (pOn ‘pln) —1] LuPn u‘le’
83224 = [FO(Pgy — P1a} — 1 (P + HZ) +Pon — Pin-

The notation of expressions (21) and (22) remains
without change, with the exception of the third term
(i =3):

Dpyy = 2 E Sr10n A iy (1) £ (1, X)

Fy

"

X J ¥, (Fa*) (Fo — Fo*) exp |p,, (Fo — Fo*)] d Fo*,
p .

D=2 ¥ 810 A5 (X Rx( 1) (P FO)F

n=}

1
x j B85 (X) (1t X)dX + hy (i) X
]
Fo

X S‘ W, (Fo*) (Fo — Fo*) exp [p,, (Fo — Fo*)l d Fo*] .
0

The denominators

Aln = A2r: = Form (pln - pDn)zv ’
A3ri = I:Orm (pln - Pon)'

If D>0, thenpy; =x+ iy, p3 = x — iy, where x =
= —1/2(a; +by) — a/3 and y = (3)V%/2(a; - by).

After substitution of the values of p; and p; and
after having eliminated the imaginary parts of these
complex roots, we have solutions (19) and (20), in
which the first terms &;;, for p = p; are written with-
out change, with the exception of the denominator

An = Aln = Form (plzﬂ - 2xnp1n + xlzl + !/3) =

=3F0,, ( a} + ajb, + b}).
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If we take into consideration that when i = 0, ac-
cording to (13)—(15), x =y = 0, the following terms
are written in the form:

o 0 ~—1

n=l

x|exp (x, Fo)z, (y Fo) &y (pa) x

X j f26 To + Bre O + Form Vis 81l & (ua X) dX +
O Fao
F Ra () [ [ 1 (FO*) + vy, o (Fo¥)) x
b
x exp[X, (Fo — Fo%)} z, |y, (Fo — Fo*}] d Fo*},
where
@) = Oy + Dygy Diz2 = Dypp + Dy

CD*Ql: @,y + Dy ®;2= (Dzm + Dopss (D?1= @gl =0;

1
@y = m[ Xm=1[T,(X) —¢ KoFo,, € (X)dX +

[4]
Fo
+m f (¥, (Fo*) —& Ko ¥, (Fo*)} d Fo*;
0
1
O = m | X8y (X)+Fo,, 6,(X) dX +
0

Fo

+m § ¥, (Fo*)d Fo*,

7, (y Fo) = siny Fo; z,(y Fo) = cos y Fo;

k(p, X) = X"tk(p, X);

@y = (2F0, Xy + 1) Ya— g (D1 — X2 X
X[Fo,,, (%2 — ya) + %, + Lupzl;
Bu=—eKoLups ya (p1n—%,);

Vi = —eKoly, — g %y (Prn — %)k

Wiy = — [(2F0,, %, + 1) (1 — ) +
+ FO, (% — ) + X, + Lupz]s
Bz = —eKo(Lu p,z, — 2x2Fo,,.); Vis = P1. £ Ko;
gy = —LuPnpl(p, — £ yn s
Bar = [FO,m (260 + w2 + 11 4 — g (Prn — X)X
x (& Ko LuPn ps — Fo,p, [(%2 — ya) + %, i)+ x, 412 )3
Yor = Yo — Yo (prn — %) (X, + pa)
Up = — LuPnpd;
Baz = — [ FO,, [(2%, + pn) Prp — X1 — ya) +
+ p1, + pﬁ +eKoLuPn uf,}; Yoo = —(py, + u?z);

An = Ay, = Ay, = Ay,
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There is some interest in comparing solutions
(19)~(22) with the earlier~derived solutions for the
heat- and mass-transfer equations of the parabolic
type [2, 7]. In the general case, for the given values of
the transfer criteria we have to calculate the corre-
sponding functions and compare the derived solutions.
However, in a number of specific cases it is possible
to evaluate the relaxation term Fopp,8°@/6Fof in
Eq. (2). As an example, let us assume T, = 0, &, =
=0, & =0, ¥; = const, ¥, = const; then solutions
(19)—(20) for py = pz =p3 < 0 have the form

T (X, Fo) = m(Ki, — KoLuKi,)Fo +
+ me Ko LuKi, Fo,,, x [1 — exp(— Fo/Fo,,)] —

_ 2L (M — X3 (Kig — NKi,) — Ay, (23)

O(X, Fo) =

=mKi, Lu {Fo —Fo,,, [1 — exp (— Fo/Fo,,)] | —

— - (ln— XIPAKi, + (1 —PaN)Kiy) = As, (20)

where
o 3
Aj=2

n=1 i=1

Cjik (U X) by (Ba) XD (P FOYP1n Ay
(=1 2
Car = by, Wy o+ b4 Wy = (FO,p Py + Lt ) X
x(Kiy, — N Kin) + Py (Kig — Ko LuKip);
Cy; = 8y; ¥y + 85p; ¥y = Lu [ [PnKi, +
+ (1 —PnN) Ki,] pa + i, Kin);
N == (1 —¢) LuKo,

are given in the table. ‘

As Fo—w, Aj— 0 and exp(~Fo/Fopy) — 0 the
values of the dimensionless mass~-transfer potential
® become equivalent to the solutions cited in [2] (page

Tm
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177), but here we must introduce the criterion Fo' =

= Fo — Fopy,. The development of the mass-content
field is somehow delayed by the dimensionless time
Foppy,. This indicates that the calculation of the mass
transfer without consideration of Foyy, leads to values
that are exaggerated over the values actually observed.
This is particularly significant in the moisture trans-
port of rheological (structured) liquids. For this same
reason there is also a slight change in the temperature
field by the magnitude of the second term in Eq. (23),
which may be rewritten to the form

T(X, Fo)~m {(Ki,,— NKi,,) [Fo — _; (M — X3 |—

— ¢ Ko LuKi,, (Fo —Fo,,,,)}. (25)
The noted effect of relaxation time (or Foyy,) on
the process of capillary-diffusion moisture transport
agrees with the conclusions drawn in references [1, 8].
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