SOLUTION OF HYPERBOLIC HEAT- AND MASS-TRANSFER EQUATIONS

N. I. Gamayunov

Inzhenerno-Fizicheskii Zhurnal, Vol. 13, No. 4, pp. 503-509, 1967

UDC 536.24.01

A method is presented for the solution of heat- and mass-transfer equations (1)-(2) for generalized conditions of the second kind. The solutions are compared with the earlier derived analogous solutions, without consideration of the Fourier relaxation criterion.

Reference [1] presents new phenomenological heatand mass-transfer equations of the parabolic-hyperbolic type in which the finite rate of moisture propagation in capillary-porous bodies is taken into consideration:

$$\frac{\partial T}{\partial F_0} = \nabla^2 T - \varepsilon \operatorname{Ko} \frac{\partial \Theta}{\partial F_0} , \qquad (1)$$

$$\operatorname{Fo}_{rm} \frac{\partial^{2} \Theta}{\partial \operatorname{Fo}^{2}} + \frac{\partial \Theta}{\partial \operatorname{Fo}} = \operatorname{Lu} \nabla^{2} \Theta - \operatorname{Lu} \operatorname{Pn} \nabla^{2} T, \tag{2}$$

where $\text{Fo}_{\text{rm}} = a \tau_{\text{rm}} / R^2$ is the relaxation mass-transfer Fourier criterion; τ_{rm} is the relaxation time; $\nabla^2 = \frac{\partial^2}{\partial X^2} + (m-1)/X \left(\frac{\partial}{\partial X}\right) \left(0 \leq X \leq 1\right)$ is the Laplace operator. The values of m for classical bodies are presented in the table.

Let us solve system (1)-(2) for generalized boundary conditions of the second kind $\{2\}$:

$$-\frac{\partial T(1, \text{ Fo})}{\partial X} + \text{Ki}_q(\text{Fo}) - (1 - \varepsilon) \text{Lu Ko Ki}_m(\text{Fo}) = 0, \quad (3)$$

$$-\frac{\partial \Theta(1, \text{ Fo})}{\partial X} + \text{Pn}\frac{\partial T(1, \text{ Fo})}{\partial X} + \text{Ki}_m(\text{Fo}) = 0, \quad (4)$$

$$\frac{\partial T(0, \text{ Fo})}{\partial X} = 0; \quad \frac{\partial \Theta(0, \text{ Fo})}{\partial X} = 0 \tag{5}$$

and initial conditions

$$T(X, 0) = T_0(X); \Theta(X, 0) = \Theta_0(X);$$

$$\frac{\partial \Theta(X, 0)}{\partial F_0} = \Theta_1(X). \tag{6}$$

Applying the final integral transformation [2, 3] to (1) and (2) with the kernel $k(\mu_n X)$ (table), and then the integral Laplace transform over the variable Fo [2, 4, 5], we find

$$T_{kL} = \sum_{i=1}^{2} \delta_{1j} \Delta^{-1} \Phi_{jL} , \qquad (7)$$

$$\Theta_{kL} = \sum_{i=1}^{2} \delta_{2i} \, \Delta^{-1} \, \Phi_{jL} \,, \tag{8}$$

where

$$\delta_{11} = \text{Fo}_{rm} p^2 + p + \text{Lu} \,\mu_n^2; \quad \delta_{12} = -p \,\epsilon \,\text{Ko};$$
 (9)

$$\delta_{21} = \text{Lu Pn } \mu_n^2; \quad \delta_{22} = p + \mu_n^2;$$
 (10)

$$\Delta = \delta_{11}\delta_{22} - \delta_{12}\delta_{21} = \text{Fo}_{rm} (p - p_1) (p - p_2) (p - p_3). \quad (11)$$

The roots p_i (i = 1, 2, 3) are found from the equation

$$p^{3} + (\mu_{n}^{2} + Fo_{rm}^{-1}) p^{2} + (1 + Lu + \varepsilon \text{ Ko Pn Lu}) \times \times Fo_{rm}^{-1} \mu_{n}^{2} p + Lu Fo_{rm}^{-1} \mu_{n}^{4} = 0.$$
 (12)

From the Kardano formula

$$p_1 = a_1 + b_1 - \frac{a}{3},$$

$$p_{2.3} = -\frac{1}{2}(a_1 + b_1) - \frac{a}{3} \pm i \frac{\sqrt{3}}{2}(a_1 - b_1),$$

where

$$a_{1} = \sqrt[3]{-\frac{u}{2} + \sqrt{\frac{u^{2}}{4} + \frac{v^{3}}{27}}};$$

$$b_{1} = \sqrt[3]{-\frac{u}{2} - \sqrt{\frac{u^{2}}{4} + \frac{v^{3}}{27}}};$$

$$u = \frac{2\alpha^{3}}{27} - \frac{\alpha\beta}{3} + \gamma; \ v = -\frac{\alpha^{2}}{3} + \beta,$$

with $a_1b_1 = -v/3$;

$$\alpha = \mu_n^2 + \text{Fo}_{rm}^{-1} = -(p_1 + p_2 + p_3); \tag{13}$$

$$\beta = (1 + Lu + \epsilon \operatorname{Ko} \operatorname{Pn} \operatorname{Lu}) \operatorname{Fo}_{rm}^{-1} \mu_n^2 =$$

$$= p_1 p_2 + p_1 p_3 + p_2 p_3; (14)$$

$$y = \text{Lu Fo}_{rm}^{-1} \mu_n^4 = -p_1 p_2 p_3. \tag{15}$$

The validity of Eqs. (13)–(15) follows from the theory of polynomials [6]. The convergence of series (21) and (22) presented below imposes the condition that all the roots p_i be negative. In particular, this follows from (13)–(15), since α , β , and γ are quantities that are always positive. The roots p_{in} are calculated from the above-cited formulas, but into these we must successively substitute the values of $\mu_1, \ \mu_2, \dots, \ \mu_n$ (n = 1,2,..., ∞).

If the discriminant $D=u^2/4+v^3/27<0$, all roots are real and different; if D=0, then p_1 and $p_2=p_3$ are real numbers; if D>0, p_1 is a real root and p_2 and p_3 are conjugate complex roots.

The reconversion for the variable X is accomplished with the formula [2-4]

$$\varphi(X, \text{ Fo}) = m [\varphi(0, \text{ Fo})]_k +$$

+ 2
$$\sum_{n=1}^{\infty} k_1(\mu_n) k(\mu_n X) [\varphi(\mu_n, Fo)]_k$$
, (16)

where the values of m, $k_1(\mu_n)$, and $k(\mu_n X)$ for classical bodies are given in the table.

To find $[\varphi(0, Fo)]_k$, i.e., $T_k(0, Fo)$ and $\Theta_k(0, Fo)$, it must be assumed in Eq. (12) that $\mu_n = 0$, so that we have

$$p^3 + p^3 \operatorname{Fo}_{rm}^{-1} = 0, (17)$$

whence $p_1 = -Fo_{rm}^{-1}$ and the double root $p_2 = p_3 = 0$. Using the formula

$$[\varphi(0, Fo)]_{k} = \lim_{p \to Fo_{rm}^{-1}} \frac{\varphi(p)}{\psi_{1}(p)} \exp p Fo +$$

$$+ \lim_{p \to 0} \left[Fo \exp p Fo \frac{\varphi(p)}{\psi_{2}(p)} + \right]$$

$$+ \exp p Fo \frac{\varphi'(p)}{\psi_{2}(p)} - \exp p Fo \frac{\varphi(p) \psi_{2}'(p)}{[\psi_{2}(p)]^{2}} , \quad (18)$$

where

$$\psi_1 = \text{Fo}_{rm} p^2; \ \psi_2 = \text{Fo}_{rm} (p + \text{Fo}_{rm}^{-1}).$$

Since $\varphi(p) = \delta_{lj}\Phi_{j}(l, j = 1, 2)$, as follows from (9)—(10),

$$\lim_{\mu_n, p\to 0} \delta_{ij} \Phi_j = 0, \text{ while } \lim_{\mu_n, p\to 0} \varphi'(p) = \lim_{\mu_n, p\to 0} \delta'_{ij} \Phi_j.$$

After calculation and transformation we have the final solution for D < 0 and $p_1 \neq p_2 \neq p_3 < 0$:

$$T(X, \text{ Fo}) = \sum_{i=1}^{2} \sum_{i=1}^{3} \Phi_{1ii},$$
 (19)

$$\Theta(X, \text{ Fo}) = \sum_{i=1}^{2} \sum_{j=1}^{3} \Phi_{2ji},$$
 (20)

where

$$\Phi_{l1} = \sum_{i=1}^{3} \Phi_{l1i} =$$

$$= v_{l12} m \int_{0}^{1} X^{m-1} [T_{0}(X) + \varepsilon \operatorname{Ko} \Theta_{0}(X)] dX +$$

$$+ 2 \sum_{n=1}^{\infty} \sum_{i=1}^{3} \delta_{l1in} \Delta_{in}^{-1} k_{1}(\mu_{n}) k(\mu_{n} X) \exp(p_{in} \operatorname{Fo}) \times$$

$$\times \int_{0}^{1} [T_{0}(X) + \varepsilon \operatorname{Ko} \Theta_{0}(X)] \overline{k}(\mu_{n} X) dX +$$

$$+ v_{l12} m \int_{0}^{F_0} \Psi_1(Fo^*) dFo^* +$$

$$+ 2 \sum_{n=1}^{\infty} \sum_{i=1}^{3} \delta_{l1in} \Delta_{in}^{-1} k_2(\mu_n) k(\mu_n X) \times$$

$$\times \int_{0}^{F_0} \Psi_1(Fo^*) \exp \left[p_{ln} (Fo - Fo^*) \right] dFo^*; \qquad (21)$$

$$\Phi_{l2} = \sum_{i=1}^{3} \Phi_{l2i} =$$

$$= v_{l21} \left\{ Fo_{rm} \exp \left(- Fo / Fo_{rm} \right) m \int_{0}^{1} X^{m-1} \Theta_1(X) dX +$$

$$+ m \int_{0}^{F_0} \Psi_2(Fo^*) \exp \left[- (Fo - Fo^*) / Fo_{rm} \right] dFo^* \right\} +$$

$$+ v_{l22} \left\{ m \int_{0}^{1} X^{m-1} \left[Fo_{rm} \Theta_1(X) + \right] +$$

$$+ \Theta_0(X) dX + m \int_{0}^{F_0} \Psi_2(Fo^*) dFo^* \right\} +$$

$$\times \left\{ \exp\left(p_{i_n} \operatorname{Fo}\right) k_1(\mu_n) \int_0^1 \left[\operatorname{Fo}_{rm} \Theta_1(X) + \right. \right.$$

$$\left. + \left(\operatorname{Fo}_{rm} p_{i_n} + 1\right) \Theta_0(X) \right] \overline{k} (\mu_n X) dX +$$

$$\left. + k_2(\mu_n) \int_0^{\operatorname{Fo}} \Psi_2(\operatorname{Fo}^*) \exp\left[p_{i_n} (\operatorname{Fo} - \operatorname{Fo}^*)\right] d \operatorname{Fo}^* \right\},$$

$$\overline{k} (\mu_n X) = X^{m-1} k (\mu_n X);$$

 $+2\sum_{n=1}^{\infty}\sum_{j=1}^{3}\delta_{i2i_{n}}\Delta_{in}^{-1}k(\mu_{n}X)\times$

 $\nu_{121}=\epsilon$ Ko, $\nu_{221}=-1$, $\nu_{112}=1$, $\nu_{212}=0$, $\nu_{122}=-\epsilon$ Ko, $\nu_{222}=1$, $\delta_{ljin}(l,j=1,2;i=1,2,3)$ are Eqs. (9)— (10) into which instead of p we have, respectively, substituted the roots p_{in} ; Δ_{in} are derived from (11) by replacing p by p_{in} and by eliminating the i-th cofactor, which is equal to zero: $\Delta_{1n}=Fo_{rm}(p_{in}-p_{2n})$ ($p_{in}-p_{3n}$); $\Delta_{2n}=-Fo_{rm}(p_{in}-p_{2n})$ ($p_{2n}-p_{3n}$); $\Delta_{3n}=-Fo_{rm}(p_{2n}-p_{2n})$ ($p_{2n}-p_{3n}$); $\Delta_{3n}=-Fo_{rm}(p_{2n}-p_{2n})$ ($p_{2n}-p_{3n}$); $\Delta_{3n}=-Fo_{rm}(p_{2n}-p_{2n})$ ($p_{2n}-p_{3n}$); $\Delta_{3n}=-Fo_{rm}(p_{2n}-p_{2n})$ ($p_{2n}-p_{3n}$); $\Delta_{3n}=-Fo_{rm}(p_{2n}-p_{2n})$

(22)

Kernels of integral transformations and characteristic equations

	m	x	Kernel of integral transfor-mations	k1 (μη)	k ₂ (μ _n)	Characteristic equation	η _m
Plate	1	R	cos μ _n X	1	(-1) ⁿ	$\sin \mu_n = 0$ $\mu_n = n \pi \ (n = 1, 2, \ldots)$	1/3
Cylinder	2	R	$J_0(\mu_n X)$	$\frac{1}{J_0^2(\mu_n)}$	$\frac{1}{J_0(\mu_n)}$	$J_1\left(\mu_n\right)=0$	1/2
Sphere	3	r R	$\frac{\sin \mu_n X}{\mu_n X}$	$\frac{\mu_n^2}{\sin^2 \mu_n}$	μ _n sin μ _n	$\operatorname{tg}\mu_n=\mu_n$	3/5

Note: R is half the thickness of the plate, and the external radii of the cylinder and the sphere are $0 \le x \le R$, $0 \le r \le R$.

= $\text{Fo}_{rm}(p_{in} - p_{3n}) (p_{2n} - p_{3n}); \ \Psi_1 = \text{Ki}_q(F_0) - (1 - \epsilon) \text{LuKoKi}_m(F_0) \text{ and } \Psi_2 = \text{LuKi}_m(F_0).$

When D = 0 we have $p_1 = 2a_1 - \alpha/3 < 0$ and the double root $p_0 = p_2 = p_3 = -(a_1 + \alpha/3) < 0$.

To find the original from the mapping of (7) and (8) we must use formula (18): here it is necessary to find the limits of the denominators $\psi_1(p) = \text{Fo}_{rm}(p - p_0)^2$ and $\psi_2(p) = \text{Fo}_{rm}(p - p_1)$, for the numerator $\varphi(p)$ and its derivative, respectively, as $p \to p_1$ and $p \to p_0$.

If we take into consideration that $\Psi_2(\mathbf{p}) = \mathrm{Fo}_{\mathrm{rm}}$, while $\varphi'(\mathbf{p}) = \delta' l_j \Phi_{jL} + \delta_{lj} \Phi_{jL}$, after appropriate calculations and transformations we have a common notation for the solution in the form of (19) and (20), but here the value of δ_{ljin} in formulas (21) and (22) are equal to

$$\begin{split} \delta_{11in} &= \operatorname{Fo}_{rm} p_{in}^2 + p_{in} + \operatorname{Lu} \mu_n^2, \ \delta_{12in} = -p_{in} \, \varepsilon \operatorname{Ko}, \\ \delta_{21in} &= \operatorname{Lu} \operatorname{Pn} \mu_n^2, \ \delta_{22in} = p_{in} + \mu_n^2 \\ (i = 1, \ 3; \ p_{in} = p_{1n} \ \text{or} \ p_{0n}), \\ \delta_{112n} &= [\operatorname{Fo} (p_{0n} - p_{1n}) - 1] (\operatorname{Fo}_{rm} p_{0n}^2 + p_{0n} + \operatorname{Lu} \mu_n^2) + \\ &\quad + (2\operatorname{Fo}_{rm} p_{0n} + 1) (p_{0n} - p_{1n}), \\ \delta_{122n} &= -\varepsilon \operatorname{Ko} [\operatorname{Fo} (p_{0n} - p_{1n}) p_{0n} - p_{1n}], \\ \delta_{212n} &= [\operatorname{Fo} (p_{0n} - p_{1n}) - 1] \operatorname{Lu} \operatorname{Pn} \mu_n^2, \\ \delta_{222n} &= [\operatorname{Fo} (p_{0n} - p_{1n}) - 1] (p_{0n} + \mu_n^2) + p_{0n} - p_{1n}. \end{split}$$

The notation of expressions (21) and (22) remains without change, with the exception of the third term (i = 3):

$$\begin{split} \Phi_{l13} &= 2 \sum_{n=1}^{\infty} \delta_{l13n} \Delta_{3n}^{-1} \, k_2 \, (\mu_n) \, k \, (\mu_n \, X) \, \times \\ &\times \int_{0}^{\text{Fo}} \Psi_1 \, (\text{Fo}^*) \, (\text{Fo} - \text{Fo}^*) \, \exp \left[p_{0n} \, (\text{Fo} - \text{Fo}^*) \right] \, d \, \text{Fo}^*, \\ \Phi_{l23} &= 2 \sum_{n=1}^{\infty} \delta_{l23n} \Delta_{3n}^{-1} \, k \, (\mu_n \, X) \left[k_1 (\mu_n) \exp \left(p_{0n} \, \text{Fo} \right) \text{Fo}_{rm} \, \times \right. \\ & \times \int_{0}^{1} \Theta_0 \, (X) \, \overline{k} \, (\mu_n \, X) \, dX \, + \, k_2 \, (\mu_n) \, \times \\ & \times \int_{0}^{\text{Fo}} \Psi_2 \, (\text{Fo}^*) \, (\text{Fo} - \text{Fo}^*) \exp \left[p_{0n} \, (\text{Fo} - \text{Fo}^*) \right] \, d \, \text{Fo}^* \, \right]. \end{split}$$

The denominators

$$\Delta_{1n} = \Delta_{2n} = \text{Fo}_{rm} (p_{1n} - p_{0n})^2,$$

 $\Delta_{3n} = -\text{Fo}_{rm} (p_{1n} - p_{0n}).$

If D > 0, then $p_2 = x + iy$, $p_3 = x - iy$, where $x = -1/2(a_1 + b_1) - \alpha/3$ and $y = (3)^{1/2}/2(a_1 - b_1)$.

After substitution of the values of p_2 and p_3 and after having eliminated the imaginary parts of these complex roots, we have solutions (19) and (20), in which the first terms Φ_{lj_1} for $p=p_1$ are written without change, with the exception of the denominator

$$\Delta_n = \Delta_{1n} = \text{Fo}_{rm} (p_{1n}^2 - 2x_n p_{1n} + x_n^2 + y_n^2) =$$

$$= 3\text{Fo}_{rm} (a_1^2 + a_1 b_1 + b_1^2).$$

If we take into consideration that when $\mu_0 = 0$, according to (13)-(15), x = y = 0, the following terms are written in the form:

$$\begin{split} \Phi_{l,k=1,2}^{\dagger} & \Phi_{lk}^{\dagger} + 2 \sum_{n=1}^{\infty} k (\mu_{n} X) \Delta_{n}^{-1} \times \\ & \times |\exp(x_{n} \operatorname{Fo}) z_{k} (y \operatorname{Fo}) k_{1} (\mu_{n}) \times \\ & \times \int_{0}^{1} [z_{lk} T_{0} + \beta_{lk} \Theta_{0} + \operatorname{Fo}_{lm} Y_{lk} \Theta_{1}] \overline{k} (\mu_{n} X) dX + \\ & + k_{2} (\mu_{n}) \int_{0}^{\mathbb{F}^{\circ}} [\alpha_{lk} \psi_{1} (\operatorname{Fo}^{*}) + \gamma_{lk} \psi_{2} (\operatorname{Fo}^{*})] \times \\ & \times \exp\left[X_{n} (\operatorname{Fo} - \operatorname{Fo}^{*})\right] z_{k} [y_{n} (\operatorname{Fo} - \operatorname{Fo}^{*})] d \operatorname{Fo}^{*}\right], \end{split}$$
 where
$$\Phi_{11}^{\bullet} = \Phi_{112} + \Phi_{122}; \quad \Phi_{12}^{\bullet} = \Phi_{113} + \Phi_{123}; \\ \Phi_{21}^{\bullet} = \Phi_{212} + \Phi_{222}; \quad \Phi_{22}^{\bullet} = \Phi_{213} + \Phi_{223}; \quad \Phi_{11}^{0} = \Phi_{21}^{0} = 0; \\ \Phi_{12}^{0} = m \int_{0}^{1} X^{m-1} [T_{0}(X) - \varepsilon \operatorname{Ko} \operatorname{Fo}_{lm} \Theta_{1}(X)] dX + \\ & + m \int_{0}^{\mathbb{F}^{\circ}} [\Psi_{1}(\operatorname{Fo}^{*}) - \varepsilon \operatorname{Ko} \Psi_{2} (\operatorname{Fo}^{*})] d \operatorname{Fo}^{*}; \\ D_{22}^{0} = m \int_{0}^{1} X^{m-1} [\Theta_{0}(X) + \operatorname{Fo}_{lm} \Theta_{1}(X)] dX + \\ & + m \int_{0}^{\mathbb{F}^{\circ}} \Psi_{2} (\operatorname{Fo}^{*}) d \operatorname{Fo}^{*}; \\ z_{1}(y \operatorname{Fo}) = \sin y \operatorname{Fo}; \quad z_{2}(y \operatorname{Fo}) = \cos y \operatorname{Fo}; \\ \overline{k} (\mu_{n} X) = X^{m-1} k (\mu_{n} X); \\ \alpha_{11} = (2 \operatorname{Fo}_{lm} x_{n} + 1) y_{n} - y_{n}^{-1} (\rho_{1n} - x_{n}) \times \\ \times [\operatorname{Fo}_{lm} (x_{n}^{2} - y_{n}^{2}) + x_{n} + \operatorname{Lu} \mu_{n}^{2}]; \\ \beta_{11} = -\varepsilon \operatorname{Ko} \operatorname{Lu} \mu_{n}^{2} y_{n}^{-1} (\rho_{1n} - x_{n}); \\ \gamma_{11} = -\varepsilon \operatorname{Ko} [y_{n} - y_{n}^{-1} x_{n} (\rho_{1n} - x_{n}); \\ \gamma_{11} = -\varepsilon \operatorname{Ko} (\operatorname{Lu} \mu_{n}^{2} - 2x^{2} \operatorname{Fo}_{lm}); \quad \gamma_{12} = \rho_{1n} \varepsilon \operatorname{Ko}; \\ \alpha_{21} = - [(2 \operatorname{Fo}_{lm} x_{n} + 1) (\rho_{1n} - x_{n}) + \\ + \operatorname{Fo}_{lm} (x_{n}^{2} - y_{n}^{2}) + x_{n} + \operatorname{Lu} \mu_{n}^{2}]; \\ \beta_{21} = [\operatorname{Fo}_{lm} (2x_{n} + \mu_{n}^{2}) + 1] y_{n} - y_{n}^{-1} (\rho_{1n} - x_{n}) \times \\ \times |\varepsilon \operatorname{Ko} \operatorname{Lu} \operatorname{Pn} \mu_{n}^{2} - \operatorname{Fo}_{lm} [(x_{n}^{2} - y_{n}^{2}) + x_{n} \mu_{n}^{2}] + x_{n} + \mu_{n}^{2}; \\ \gamma_{21} = y_{n} - y_{n}^{-1} (\rho_{1n} - x_{n}) (x_{n} + \mu_{n}^{2}); \\ \alpha_{22} = - \operatorname{Lu} \operatorname{Pn} \mu_{n}^{2}; \\ \beta_{22} = - \{\operatorname{Fo}_{lm} [(2x_{n} + \mu_{n}^{2}) \rho_{1n} - x_{n}^{2} - y_{n}^{2}] + \end{split}$$

 $+ p_{1n} + \mu_n^2 + \varepsilon \text{ Ko Lu Pn } \mu_n^2$; $\gamma_{22} = -(p_{1n} + \mu_n^2)$;

 $\Delta_n = \Delta_{1n} = \Delta_{2n} = \Delta_{3n}.$

There is some interest in comparing solutions (19)-(22) with the earlier-derived solutions for the heat- and mass-transfer equations of the parabolic type [2, 7]. In the general case, for the given values of the transfer criteria we have to calculate the corresponding functions and compare the derived solutions. However, in a number of specific cases it is possible to evaluate the relaxation term $\text{Fo}_{\text{rm}} \partial^2 \Theta / \partial \text{Fo}^2$ in Eq. (2). As an example, let us assume $T_0 = 0$, $\Theta_0 = 0$, $\Theta_1 = 0$, $\Psi_1 = \text{const}$, $\Psi_2 = \text{const}$; then solutions (19)-(20) for $p_1 \neq p_2 \neq p_3 < 0$ have the form

$$T(X, \text{ Fo}) = m (\text{Ki}_{q} - \text{Ko Lu Ki}_{m}) \text{ Fo} +$$

$$+ m \in \text{Ko Lu Ki}_{m} \text{ Fo}_{rm} \times [1 - \exp(-\text{Fo}/\text{Fo}_{rm})] -$$

$$- \frac{1}{2} (\eta_{m} - X^{2}) (\text{Ki}_{q} - \text{NKi}_{m}) - \Lambda_{1}, \qquad (23)$$

$$\Theta(X, \text{ Fo}) =$$

$$= m \text{Ki}_{m} \text{Lu } \{ \text{Fo} - \text{Fo}_{rm} [1 - \exp(-\text{Fo}/\text{Fo}_{rm})] \} -$$

$$- \frac{1}{2} (\eta_{m} - X^{2}) [\text{Pn Ki}_{q} + (1 - \text{Pn N}) \text{Ki}_{m}] - \Lambda_{2}, \quad (24)$$

where

$$\Lambda_{j} = 2 \sum_{n=1}^{\infty} \sum_{i=1}^{3} C_{ji} k (\mu_{n} X) k_{2}(\mu_{n}) \exp(p_{in} \operatorname{Fo})/p_{in} \Delta_{in}$$

$$(j = 1, 2);$$

$$C_{1i} = \delta_{11i} \Psi_{1} + \delta_{12i} \Psi_{2} = (\operatorname{Fo}_{rm} p_{in}^{2} + \operatorname{Lu} \mu_{n}^{2}) \times$$

$$\times (\operatorname{Ki}_{q} - \operatorname{N} \operatorname{Ki}_{m}) + p_{in} (\operatorname{Ki}_{q} - \operatorname{Ko} \operatorname{Lu} \operatorname{Ki}_{m});$$

$$C_{2i} = \delta_{21i} \Psi_{1} + \delta_{22i} \Psi_{2} = \operatorname{Lu} \{ [\operatorname{Pn} \operatorname{Ki}_{q} +$$

$$+ (1 - \operatorname{Pn} \operatorname{N}) \operatorname{Ki}_{m}] \mu_{n}^{2} + p_{in} \operatorname{Ki}_{m} \};$$

$$N = (1 - \varepsilon) \operatorname{Lu} \operatorname{Ko},$$

 $\boldsymbol{\eta}_{\mathbf{m}}$ are given in the table.

As Fo $\rightarrow \infty$, $\Lambda_j \rightarrow 0$ and $\exp(-\text{Fo/Fo}_{rm}) \rightarrow 0$ the values of the dimensionless mass-transfer potential Θ become equivalent to the solutions cited in [2] (page

177), but here we must introduce the criterion Fo' = = Fo - Fo_{rm}. The development of the mass-content field is somehow delayed by the dimensionless time Fo_{rm}. This indicates that the calculation of the mass transfer without consideration of Fo_{rm} leads to values that are exaggerated over the values actually observed. This is particularly significant in the moisture transport of rheological (structured) liquids. For this same reason there is also a slight change in the temperature field by the magnitude of the second term in Eq. (23), which may be rewritten to the form

$$T(X, \text{ Fo}) \simeq m \left\{ (\text{Ki}_q - \text{NKi}_m) \left[\text{Fo} - \frac{1}{2} (\eta_m - X^2) \right] - \varepsilon \text{ Ko Lu Ki}_m (\text{Fo} - \text{Fo}_{rm}) \right\}.$$
 (25)

The noted effect of relaxation time (or Fo_{rm}) on the process of capillary-diffusion moisture transport agrees with the conclusions drawn in references [1, 8].

REFERENCES

- 1. A. V. Luikov, IFZh [Journal of Engineering Physics], 9, no. 3, 1965.
- 2. A. V. Luikov and Yu. A. Mikhailov, The Theory of Heat- and Mass-Transfer [in Russian], Gosenergoizdat, Moscow-Leningrad, chap. 5, 1963.
- 3. A. I. Sneddon, Fourier Transforms [Russian translation], IL, 1955.
- 4. V. A. Ditkin and A. P. Prudnikov, Integral Transformations and Operational Calculus [in Russian], Fizmatgiz, Moscow, \$6, 1961.
- 5. G. Doetsch, Guide to the Applications of Laplace Transforms [Russian translation], Izd. Nauka, Moscow, 1965.
- 6. L. Ya. Okunev, Advanced Algebra, Uchpedgiz, Moscow, p. 206, 1958.
 - 7. N. I. Gamayunov, IFZh, 5, no. 2, 1962.
- 8. S. A. Tanaeva, IFZh [Journal of Engineering Physics], 9, no. 5, 1965.
- 12 January 1967 Polytechnic Institute, Kalinin